Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 22(3): 1141-1153, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31867821

RESUMO

Some temperate tree species are associated with very low soil nitrification rates, with important implications for forest N dynamics, presumably due to their potential for biological nitrification inhibition (BNI). However, evidence for BNI in forest ecosystems is scarce so far and the nitrifier groups controlled by BNI-tree species have not been identified. Here, we evaluated how some tree species can control soil nitrification by providing direct evidence of BNI and identifying the nitrifier group(s) affected. First, by comparing 28 year-old monocultures of several tree species, we showed that nitrification rates correlated strongly with the abundance of the nitrite oxidizers Nitrobacter (50- to 1000-fold changes between tree monocultures) and only weakly with the abundance of ammonia oxidizing archaea (AOA). Second, using reciprocal transplantation of soil cores between low and high nitrification stands, we demonstrated that nitrification changed 16 months after transplantation and was correlated with changes in the abundance of Nitrobacter, not AOA. Third, extracts of litter or soil collected from the low nitrification stands of Picea abies and Abies nordmanniana inhibited the growth of Nitrobacter hamburgensis X14. Our results provide for the first time direct evidence of BNI by tree species directly affecting the abundance of Nitrobacter.


Assuntos
Ecossistema , Interações Hospedeiro-Patógeno/fisiologia , Nitrificação , Nitrobacter/fisiologia , Microbiologia do Solo , Solo/química , Árvores/microbiologia , Archaea/crescimento & desenvolvimento , Oxirredução
2.
Microbiome ; 6(1): 216, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518415

RESUMO

BACKGROUND: The World-famous UNESCO heritage from the Paleolithic human society, Lascaux Cave (France), has endeavored intense microclimatic perturbations, in part due to high touristic pressure. These perturbations have resulted in numerous disturbances of the cave ecosystem, including on its microbial compartment, which resulted in the formation of black stains especially on the rock faces of the passage. We investigated the cave microbiome in this part of Lascaux by sampling three mineral substrates (soil, banks, and inclined planes) on and outside stains to assess current cave microbial assemblage and explore the possibility that pigmented microorganisms involved in stain development occur as microbial consortia. METHODS: Microbial abundance and diversity were assessed by means of quantitative PCR and high-throughput sequencing (Illumina MiSeq) of several DNA and cDNA taxonomic markers. Five sampling campaigns were carried out during winter and summer to embrace potential seasonal effect in this somewhat stable environment (based on measurements of temperature and CO2 concentration). RESULTS: While the season or type of mineral substrate did not affect the abundances of bacteria and micro-eukaryotes on or outside stains, mineral substrate rather than stain presence appears to be the most significant factor determining microbial diversity and structuring microbial community, regardless of whether DNA or cDNA markers were considered. A phylogenetic signal was also detected in relation to substrate types, presence of stains but not with season among the OTUs common to the three substrates. Co-occurrence network analyses showed that most bacterial and fungal interactions were positive regardless of the factor tested (season, substrate, or stain), but these networks varied according to ecological conditions and time. Microorganisms known to harbor pigmentation ability were well established inside but also outside black stains, which may be prerequisite for subsequent stain formation. CONCLUSIONS: This first high throughput sequencing performed in Lascaux Cave showed that black stains were secondary to mineral substrate in determining microbiome community structure, regardless of whether total or transcriptionally active bacterial and micro-eukaryotic communities were considered. These results revealed the potential for new stain formation and highlight the need for careful microbiome management to avoid further cave wall degradation.


Assuntos
Bactérias/classificação , Cavernas/microbiologia , Fungos/classificação , Análise de Sequência de DNA/métodos , Bactérias/genética , Bactérias/isolamento & purificação , Dióxido de Carbono/análise , DNA Fúngico/genética , França , Fungos/genética , Fungos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Atividades Humanas , Humanos , Metagenômica , Microbiota , Filogenia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...